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Abstract
We present an analytical and rigorous study on a TOPS (task optimization
in the presence of signal-dependent noise) model with a hold-on or an end-
point control. Optimal control signals are rigorously obtained, which enables
us to investigate various issues about the model including its trajectories,
velocities, control signals, variances and the dependence of these quantities on
various model parameters. With the hold-on control, we find that the optimal
control can be implemented with an almost ‘nil’ hold-on period. The optimal
control signal is a linear combination of two sub-control signals. One of the
sub-control signals is positive and the other is negative. With the end-point
control, the end-point variance is dramatically reduced, in comparison with the
hold-on control. However, the velocity is not symmetric (bell shape). Finally,
we point out that the velocity with a hold-on control takes the bell shape only
within a limited parameter region.

PACS numbers: 05.40.Jc, 02.50.−r, 05.90.+m, 84.35.+i, 87.19.La

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The earliest TOPS (task optimization in the presence of signal-dependent noise) model was
first proposed in [9] and since then it has been intensively investigated in the literature, both
in experiments (see, for example, some are reviews [7, 10–13, 15, 18, 22, 25, 26, 29]) and in
theory [6, 21, 24, 27]. Various interesting versions of the model have also been put forward
(see aforementioned reviews). Basically, in the TOPS model, we intend to minimize the
variance of the trajectory in a specified time window. For example, in the first TOPS model
[9], the variance of post-movement within time window [T , T + R] is minimized, where T
is the time the eye or arm has arrived at its goal and R > 0 is the length of optimization
time window. Despite the wide interests in the model, no analytical solution of various TOPS
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models has been reported, and so it remains a difficult issue to fully understand the behaviour
of models [21]. In the current paper we provide a rigorous approach and the analytical solution
of the TOPS model is found. We confine ourselves to the simplest model studied in [9], but
our approach is general enough to tackle other related models as well.

It is one of the puzzling issues in the neuroscience that why neuron fires randomly (an
issue related to rate coding and time coding [8, 16, 23]). With deterministic inputs and
outputs, the required resourses for carrying out a computation in the nervous system can be
significantly reduced. It is claimed that the TOPS model might reveal one functional role of
random activity widely observed in the nervous system. By modelling saccadic movements
and arm movements, it is found that the velocity profile obtained from TOPS models fits well
with experimental data, i.e. it takes the bell shape.

Although the TOPS model provides us with an excellent explanation on stochastic neuron
firings, at the same time, it introduces many other issues to explain. As usual, a successful
theory only serves to raise a whole set of new questions. For example, why does the velocity
profile exhibit the bell shape? Which key mechanism determines the output? How does the
model behaviour depend on various model parameters?

By solving the model theoretically, we answer all aforementioned questions. We find that
the optimal control signal is a linear combination of two control signals: one is positive and
the other is negative. The result about the combination of two signals tells us how to realize
input signals via actual neuron outputs. Remembering that in the nervous system, a neuron is
either excitatory or inhibitory.

How does the control signal depend on the hold-on period? From numerical simulations,
it seems a certain amount of hold-on period is required to correctly perform the task, or to
produce the bell shape velocity. We find that the hold-on period could be as short as possible: it
could even approach to zero. We then check the variability of the velocity and trajectory of the
model. Furthermore, we point out that the hold-on constraint is equivalent to an instantaneous
constraint: to require that the velocity vanishes when the trajectory arrives at the desired
position. It is found that the bell shape velocity is partly from the assumption of zero velocity
at the end of movement, or the hold-on constraint.

To gain a further understanding of the hold-on control, we then consider a control problem
with an end-point control of variance. It is found that the variance of the trajectory with the
end-point control is considerably reduced, in comparison with the hold-on control. However,
the property of symmetric velocity is no longer true. This also leads us to further ask another
question: whether the symmetric velocity is a natural consequence of the TOPS model or
not? Unfortunately, we find that the velocity profile depends on model parameters: with a
short period of movement (T is small), the velocity is symmetric; but with a long period of
movement, the velocity is no longer symmetric.

The paper is organized as follows. In section 2, the model is introduced. In section 3,
we consider the hold-on control problem. An analytical solution of the problem is obtained
and various properties of the solution are discussed. The equivalence between the hold-on
constraint and an instantaneous constraint on trajectory and velocity is established. In section 4,
we turn our attention to the end-point control problem and a comparison between the hold-on
and the end-point control is carried out.

This is the third in our series of papers on biological control problems. In [6], we have
found the analytical solution without hold-on constraints. In [5], we have investigated the
input signals used in the TOPS model. In the near future, we are going to carry out a study on
arm movement models and more physiologically realistic models. Our aim is to establish an
integrated system: to build models from sensory inputs to neuronal outputs and from neuronal
outputs to motor outputs.



A study on an optimal movement model 7471

2. Model

We consider a simple model of saccadic movements. Let x1(t) be the position of the eye (in
degrees) and x2(t) be its velocity (degree/s), we then have{

ẋ1 = x2

ẋ2 = − 1
τ1τ2

x1 − τ1+τ2
τ1τ2

x2 + 1
τ1τ2

ū
(2.1)

where τ1, τ2 are parameters and ū is the input signal as defined below. However, we are more
interested in general principles rather than numerically fitting of experimental data. From
now on, we assume that all parameters are in arbitrary units, although a fitting would be
straightforward. In matrix terms we have

d �Xt = A �Xt dt + d �Ut (2.2)

where

A =
(

0 1

− 1
τ1τ2

− τ1+τ2
τ1τ2

)
(2.3)

and

d �Ut =
(

0
u(t) dt+u(t)α dBt

τ1τ2

)

with Bt being Brownian motions, u(t) the control signal and α > 0. The importance of α

has been discussed in [5] and we refer the reader to it for details. Basically, under the rate
coding assumption, α = 1/2 corresponds to the Poisson inputs [20, 28]. With time coding
assumption, α = 1 is the Poisson input.

The meaning of equation (2.1) is quite clear, corresponding to the well-known Kramers’
equation which is defined by{

dXt = Vt dt

dVt = −∂H(Xt , t)/∂Xt dt − η1Vt dt + η2(t) dBt

where η1 (viscosity) and η2(t) are deterministic functions, Xt is the position, Vt is the velocity
and H is the potential. Usually, in the literature H(x, t) is a function dependent only on x.
However, in our set-up, H depends on both t and x and is thus nonhomogeneous in time.

Solving equation (2.1) we obtain that

�Xt =
∫ t

0
exp(A(t − s)) d �Ut

=
∫ t

0

[(
b12(t−s)

τ1τ2
u(s) ds

b22(t−s)

τ1τ2
u(s) ds

)
+

(
b12(t−s)

τ1τ2
uα(s) dBs

b22(t−s)

τ1τ2
uα(s) dBs

)]
(2.4)

where bik(t − s) = (exp(A(t − s)))ik, i, k = 1, 2.
Note that〈∫ T +R

T

[∫ t

0
b12(t − s)u(s)α dBs

]2

dt

〉
=

∫ T +R

T

[∫ t

0
b2

12(t − s)u(s)2α ds

]
dt (2.5)

where Bs is the standard Brownian motion. The original control problem studied in [9] is
reduced to the following optimization problem.

Hold-on control. Find u(s) ∈ L2α[0, T + R] which minimizes∫ T +R

T

[∫ t

0
b2

12(t − s)u(s)2α ds

]
dt (2.6)
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subject to the constraint∫ t

0
b12(t − s)u(s) ds = τ1τ2D for t ∈ [T , T + R]. (2.7)

In all numerical simulations below, we fix τ1 = 10 and τ2 = 100.

3. Hold-on control

It is easily seen that the eigenvalues for matrix A defined by equation (2.3) is

λ =
{

−1/τ1

−1/τ2
(3.1)

with eigenvectors v1 = (1,−1/τ1)
′ and v2 = (1,−1/τ2)

′ correspondingly. Let

B = (v1, v2) =
(

1 1

− 1
τ1

− 1
τ2

)
(3.2)

we then have

exp(A(t − s)) = B
(

exp
(− 1

τ1
(t − s)

)
0

0 exp
(− 1

τ2
(t − s)

)
)
B−1 (3.3)

and {
b12(t − s) = τ1τ2

τ2−τ1

[
exp

(− 1
τ2

(t − s)
) − exp

(− 1
τ1

(t − s)
)]

b22(t − s) = τ1τ2
τ2−τ1

[
1
τ1

exp
(− 1

τ1
(t − s)

) − 1
τ2

exp
(− 1

τ2
(t − s)

)]
.

(3.4)

The mean position and mean velocity are thus given by{〈x1(t)〉 = 1
τ2−τ1

∫ t

0

[
exp

(− 1
τ2

(t − s)
) − exp

(− 1
τ1

(t − s)
)]

u(s) ds

〈x2(t)〉 = 1
τ2−τ1

∫ t

0

[
1
τ1

exp
(− 1

τ1
(t − s)

) − 1
τ2

exp
(− 1

τ2
(t − s)

)]
u(s) ds

(3.5)

for t ∈ [0, T + R]. Note that the constraint∫ t

0
b12(t − s)u(s) ds = Dτ1τ2

for t ∈ [T , T + R] is equivalent to

exp

(
− t

τ2

)∫ t

0
exp

(
s

τ2

)
u(s) ds − exp

(
− t

τ1

)∫ t

0
exp

(
s

τ1

)
u(s) ds = (τ2 − τ1)D (3.6)

for t ∈ [T , T + R]. Since R > 0, by differentiating (3.6) with respect to t, we obtain

− 1

τ2
exp

(
− t

τ2

)∫ t

0
exp

(
s

τ2

)
u(s) ds +

1

τ1
exp

(
− t

τ1

) ∫ t

0
exp

(
s

τ1

)
u(s) ds = 0 (3.7)

for t ∈ (T , T + R). Solving equations (3.6) and (3.7), we see that{∫ t

0 exp
(

s
τ2

)
u(s) ds = Dτ2 exp

(
t
τ2

)
∫ t

0 exp
(

s
τ1

)
u(s) ds = Dτ1 exp

(
t
τ1

) (3.8)

for t ∈ [T , T + R], which implies that

u(t) = D (3.9)
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and in particular{∫ T

0 exp
(

s
τ2

)
u(s) ds = Dτ2 exp

(
T
τ2

)
∫ T

0 exp
(

s
τ1

)
u(s) ds = Dτ1 exp

(
T
τ1

)
.

(3.10)

In fact, equation (3.9) can be directly derived from the model under the hold-on constraint.
It is easily seen that

I (u) =
∫ T +R

T

∫ t

0
b2

12(t − s)|u(s)|2α ds dt

=
∫ T

0

[∫ T +R

0
b2

12(t − s) dt

]
u2α(s) ds. (3.11)

Let us define {
u,

∫ T

0
b12(T − s)u(s) ds = τ1τ2D,u(t) = D, t ∈ [T , T + R]

}
= UD.

For a small τ , consider u + τφ ∈ UD , i.e.

φ ∈
{

φ,

∫ T

0
exp(s/τ1)φ(s) ds = 0,

∫ T

0
exp(s/τ2)φ(s) ds = 0, φ(t) = 0, for t ∈ [T , T + R]

}
= U0

D.

The first two constraints in U0
D are from equation (3.10). We then have

dI (u + τφ)

dτ

∣∣∣
τ=0

= 0

which gives ∫ T

0

{[∫ T +R

0
b2

12(t − s) dt

]
|u(s)|2α−1 sgn(u(s))φ(s)

}
ds = 0. (3.12)

Comparing equation (3.12) with the first two constraints in U0
D , we conclude that[∫ T +R

0
b2

12(t − s) dt

]
|u(s)|2α−1 sgn(u(s)) = λ exp

(
s

τ1

)
+ µ exp

(
s

τ2

)
(3.13)

for s ∈ [0, T ] with two parameters λ,µ ∈ R. Hence the solution of the original problem is

u(s) =
∣∣λ exp

(
s
τ1

)
+ µ exp

(
s
τ2

)∣∣1/(2α−1)
sgn

[
λ exp

(
s
τ1

)
+ µ exp

(
s
τ2

)]
(∫ T +R

0 b2
12(t − s) dt

)1/(2α−1)
(3.14)

with λ,µ being given by


Dτ2 exp
(

T
τ2

) = ∫ T

0 exp
(

s
τ2

)
×

∣∣λ exp
(

s
τ1

)
+ µ exp

(
s
τ2

)∣∣1/(2α−1)
sgn

[
λ exp

(
s
τ1

)
+ µ exp

(
s
τ2

)]
(∫ T +R

0 b2
12(t − s) dt

)1/(2α−1)
ds

Dτ1 exp
(

T
τ1

) = ∫ T

0 exp
(

s
τ1

)
×

∣∣λ exp
(

s
τ1

)
+ µ exp

(
s
τ2

)∣∣1/(2α−1)
sgn

[
λ exp

(
s
τ1

)
+ µ exp

(
s
τ2

)]
(∫ T +R

0 b2
12(t − s) dt

)1/(2α−1)
ds.

(3.15)

We arrive at the following conclusions.
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Theorem 1. For the hold-on control problem with α > 1/2, its unique optimal control signal
is given by equation (3.14) with mean trajectory and mean velocity given by equation (3.5).

Proof. We only need to prove the uniqueness of the solution of equation (3.15), which is quite
straightforward and we leave it to the reader. �

Now we take into account various cases of the model. We first assume α = 1, the case
considered in [9] and other publications [27].

3.1. Case of α = 1

Let us define

H(s) =
∫ T +R

0
b2

12(t − s) dt

= τ 2
1 τ 2

2

(τ2 − τ1)2

{
−τ2

2

[
exp

(
− 2

τ2
(T + R − s)

)
− exp

(
2

τ2
s

)]

+
2τ1τ2

τ1 + τ2

[
exp

(
−τ1 + τ2

τ1τ2
(T + R − s)

)
− exp

(
τ1 + τ2

τ1τ2
s

)]

− τ1

2

[
exp

(
− 2

τ1
(T + R − s)

)
− exp

(
2

τ1
s

)]}
.

(λ, µ) is now the solution of the following equation:


λ
∫ T

0

exp
(

s
τ2

+ s
τ1

)
H(s)

ds + µ
∫ T

0

exp
(

2s
τ2

)
H(s)

ds = τ2D exp
(

T
τ2

)

λ
∫ T

0

exp
(

2s
τ1

)
H(s)

ds + µ
∫ T

0

exp
(

s
τ1

+ s
τ2

)
H(s)

ds = τ1D exp
(

T
τ1

)
.

(3.16)

Therefore (λ, µ) is given by(
λ

µ

)
= �−1

(
τ2D exp(T /τ2)

τ1D exp(T /τ1)

)
(3.17)

where

� =




∫ T

0

exp
(

s
τ2

+ s
τ1

)
H(s)

ds
∫ T

0

exp
(

2s
τ2

)
H(s)

ds

∫ T

0

exp
(

2s
τ1

)
H(s)

ds
∫ T

0

exp
(

s
τ1

+ s
τ2

)
H(s)

ds


 .

Therefore

u(s) =
{

[λ exp(s/τ1) + µ exp(s/τ2)]/H(s) if s ∈ [0, T ]

D otherwise.
(3.18)

Now we are in the position to discuss many interesting issues about the optimal control
signal, its velocity, trajectory etc.

The first issue we intend to address is the impact of the length of R on the model behaviour.
From [9], it seems that they claimed the final outcome of the model depends on R and a quite
large R is required. In figure 1, we plot control signals and mean velocity versus time. It is
easily seen that the control signal depends on R: the longer the R is, the more monotonic the
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Figure 1. Control signals and mean velocity with r = 1, 2, . . . , 10 (upper panel), and R = 0.1,

0.05, 0.01 (bottom panel). Control signals move upwards with 10 units when R = 2, 3, . . . , 10
and downwards with 10 units with R = 0.05, 0.01. For mean velocity only r = 1 (dashed line), 5
(solid line) and 10 (dotted line) are shown.

control signal. Nevertheless, the dependence of the velocity on R is not substantial and so is
the trajectory (not shown). In particular, when R tends to zero, we see that

u0(t) = lim
R→0

u(t)

exists (we leave the proof of it to the reader), as numerically shown in figure 1. When
R = 0.1, 0.05, 0.01, the control signals and velocity for different R are almost identical and
the velocity takes the bell shape.

Another interesting issue is to define

u(t) = u1(t) + u2(t)

with u1(t) > 0 and u2(t) < 0, corresponding to the solution equation (3.14) defined in
theorem 1. In figure 2 we plot the control signals u(t), u1(t) and u2(t). It is interesting
to note that the maximum of u2(t) is attained before u1(t) reaches its minimum. Again this
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Figure 2. Control signal and variance versus time. Upper panel (left): u(t) (solid line), u2(t)

(dashed line) and u1(t) (dotted line) versus time with T = 10, R = 1. It is found (λ, µ) =
(e4(−6.2918, 8.1321)). Upper panel (right): u1, u2, u with R = 1 (solid lines, see left), with
R = 10 (dotted lines). Bottom panel: variances with R = 0.1, 1, 2, . . . , 10.

agrees with the general principle in neuroscience: excitatory signals are the driving signals and
inhibitory signals are the followers. Furthermore the inhibitory signals show the ‘push–pull’
phenomenon: the bigger the excitatory signals are, the bigger the inhibitory signals (absolute
value). We have seen that the mean trajectory, velocity and control signals are not sensitive to
the hold-on period R, but u1 and u2 are quite sensitive to R, as shown in figure 2.

One of our future tasks is to implement neuronal control signals u1(t) and u2(t) via a
spiking neuronal network. We call them sub-control signals. Note that the decomposition of
u(t) into u1(t) and u2(t) is completely different from the results reported in [9]. In [9], they
define ū1(t) = u(t)I{u(t)>0} and ū2(t) = u(t)I{u(t)<0}, in terms of a purely phenomenological
observation. Our decomposition here might reveal more fundamental principles behind
the optimal control problem. According to our definition of sub-control signals, we have
u2(t) = λ exp(s/τ1)/H(s) < 0 and u1(t) = µ exp(s/τ2)/H(s) > 0 (see figure 2). It is not
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Figure 3. Position, velocity, control signal and variance versus time. Upper panel left (position):
thick line is the average position (〈x1(t)〉) and thin lines are realizations (x1(t)). Upper panel
right (velocity): thick line is the average velocity (〈x2(t)〉) and thin lines are realizations (x2(t)).
Bottom panel: left is the control signal and right is variance of position. Parameters are T = 10,

R = 1, D = 10, τ1 = 10 and τ2 = 100.

surprising to see that with increasing R, the sub-control signal is reduced, and correspondingly,
the variance of trajectory is reduced (figure 2).

3.2. Cases of α �= 1, α > 1/2

It is interesting to compare the results of various α. As we have mentioned before, when
α = 1/2 it corresponds to the Poisson input case. Roughly speaking, the larger the α is, the
more randomness the neuron fires.

In agreement with results in figure 1 in [6], we see that the variance is a decreasing
function of α. The larger the α is, the smaller the variance of the trajectory. Comparing the
figure of bottom panel right in figure 3 with figure 4, we see that the variance is dramatically



7478 J Feng et al

0  .2 .4 .6 .8 1
0

2

4

6

8

10

12
x  10

36

Time  (in  arbitrary  units)

V
a
ri
a
n
c
e
  (

in
  a

rb
it
ra

ry
  u

n
it
s
)

0  .2 .4 .6 .8 1
0

100

200

300

400

500

600

700

Time  (in  arbitrary  units)

V
a

ri
a

n
c
e

  (
in

  a
rb

it
ra

ry
  u

n
it
s
)

Figure 4. Variance of trajectory with α = 0.6 (left) and α = 1.4 (right).

reduced with a slight increasing of α (from 0.6 to 1.4). Remember that the larger the α is, the
more randomness the neuron fires. Our simulation results tell us that to obtain an accurate end
point of movement, the neuron should operate very randomly (with large α). Of course, we
should remind ourselves that the control signals u(s) correspond to the firing rate of neurons.
To obtain a reasonable estimate of the firing, we have to keep α small. Hence the nervous
system should find a trade-off between reducing the movement variance (increasing α) and
accurately estimating the firing rates (decreasing α).

3.3. 0 < α � 1/2

From equation (3.11) we see that when α < 1/2, and if u(s) = δy(s), the delta function at y,
we will have

I (u) = 0

which is of course the minimum point of the variance. To satisfy the constraints, we could
define

u∗(s) = a1δy1(s) + a2δy2(s) y1 �= y2, y1, y2 ∈ [0, T ]

with appropriate constants a1 and a2 so that the constraint is fulfilled and we will have

I (u∗) = 0

as well. Hence when α < 1/2, the optimal control signal is not unique.
When α = 1/2, from equation (3.11), we see that if we define

u(s) = δy0(s)

then I (u) will attain its global minimum, where y0 is the minimum point of H(s) (see
figure 5). Therefore we can define

u(s) = a1δy0(s) + a2δy0+ε(s)

for a parameter ε, and I (u) will approach its global minimum when ε tends to zero.
In conclusion, when α � 1/2, the control signal is degenerate.
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Figure 5. The function H versus time. The cross point of the vertical-dotted and horizontal-dotted
lines is the minimum point of H(s).

3.4. Instantaneous constraint

As we have mentioned in the previous section, the original control problem is a hold-on
control, i.e. we hold on the moving trajectory at the end of its movement. What form of the
solution will be if we release the hold-on constraint? In other words, we consider the following
control problem.

Control with an instantaneous constraint. Find u(s) ∈ L2α[0, T + R] which minimizes∫ T +R

T

[∫ t

0
b2

12(t − s)u(s)2α ds

]
dt (3.19)

subject to the constraint{
〈x1(T )〉 = ∫ T

0 b12(T − s)u(s) ds = τ1τ2D and

〈x2(T )〉 = ∫ T

0 b22(T − s)u(s) ds = 0.
(3.20)

Theorem 2. For the hold-on control problem with the instantaneous constraints, its unique
optimal control signal is given by equation (3.14) with mean trajectory and mean velocity
given by equation (3.5).

Proof. By noting that the constraints in equation (3.20) is equivalent to equations (3.6) and
(3.7) with t = T , which implies equation (3.10), the conclusions of the theorem follow. �

Basically theorem 2 tells us that the hold-on constraint is equivalent to the instantaneous
constraint of equation (3.20). From theorems 1 and 2, one might conclude that the bell shape
velocity automatically follows from the requirement of the vanishing velocity at time T. To see
whether this is true, we turn our attention to another form of optimization, but with identical
constraints in the next section.
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4. End-point minimization of variance

In the control problem, discussed in the previous section, we see that the variance between
[T , T + R] is minimized. Suppose that our primary purpose of control is to have a trajectory
which exhibits small variance, in particular at the end point T. The requirement leads to the
following control problem.

End-point control. Find u(s) ∈ L2α[0, T ] which minimizes∫ T

0

[
b2

12(T − s)u(s)2α
]

ds (4.1)

subject to the constraint∫ t

0
b12(t − s)u(s) ds = τ1τ2D for t ∈ [T , T + R]. (4.2)

It is straightforward to see that we have the following conclusions.

Theorem 3. The optimal control signal with the end-point control is given by

u(s) =
∣∣λ exp

(
s
τ1

)
+ µ exp

(
s
τ2

)∣∣1/(2α−1)
sgn

[
λ exp

(
s
τ1

)
+ µ exp

(
s
τ2

)]
(
b2

12(T − s)
)1/(2α−1)

(4.3)

with λ,µ satisfying


Dτ2 exp
(

T
τ2

) = ∫ T

0 exp
(

s
τ2

)
×

∣∣λ exp
(

s
τ1

)
+ µ exp

(
s
τ2

)∣∣1/(2α−1)
sgn

[
λ exp

(
s
τ1

)
+ µ exp

(
s
τ2

)]
(
b2

12(T − s)
)1/(2α−1)

ds

Dτ1 exp
(

T
τ1

) = ∫ T

0 exp
(

s
τ1

)
×

∣∣λ exp
(

s
τ1

)
+ µ exp

(
s
τ2

)∣∣1/(2α−1)
sgn

[
λ exp

(
s
τ1

)
+ µ exp

(
s
τ2

)]
(
b2

12(T − s)
)1/(2α−1)

ds

(4.4)

where α > 1/2.

Proof. The proofs are quite similar to the proof of theorem 1 and we omit them here. �

Figure 6 tells us that the variance is dramatically reduced at the end point, with the
end-point control, in comparison with the hold-on control. However, from figure 6 we could
conclude that for the end-point control, its velocity profile is not symmetric. It increases to its
maximum value when the time approaches T and suddenly drops to zero when t = T .

Whether the bell shape of the velocity in the hold-on control is a generic property of the
control or it depends on various model parameters? To theoretically prove such a conclusion,
we need to show that there is only a unique maximum point for the velocity. In fact, figure 7
clearly shows that the conclusion is not true. In figure 7, we see that the velocity has two
extreme points: one minimum and one maximum, provided that T is large. In figure 7 (right),
the critical value of T at which the velocity exhibits two extreme values is depicted, i.e. a
bifurcation diagram. We see that the critical value of T is between T = 16 and T = 17.
In other words, the bell shape velocity is observable with a relatively small T. One could of
course argue that physiologically reasonable parameter regions are the regions on the left-hand
side of the vertical dashed line in figure 7 (right), i.e. T < 16. Comparing the velocity of the
hold-on control with the end-point control, we see that for the hold-on control the velocity is



A study on an optimal movement model 7481

0   2 4 6 8 10
0

200

400

600

800

1000

1200

Time  (in  arbitrary  units)

C
o
n
tr

o
l  
s
ig

n
a
ls

  (
in

  a
rb

it
ra

ry
  u

n
it
s
)

0   2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5
x  10

6

Time  (in  arbitrary  units) 

V
a
ri
a
n
c
e
  (

in
  a

rb
it
ra

ry
  u

n
it
s
) 

0   2 4 6 8 10
–2

0

2

4

6

8

10

12

14

Time  (in  arbitrary  units)

M
e
a
n
  t
ra

je
c
to

ry
  (

in
  a

rb
it
ra

ry
  u

n
it
s
)

0   2 4 6 8 10
–1

0

1

2

3

4

5

6

7

8

9

10

Time (in  arbitrary  units)

V
e
lo

c
it
y
  (

in
  a

rb
it
ra

ry
  u

n
it
s
)

Figure 6. Control signals of the end-point minimization, variance, mean trajectory (thick line),
realizations of trajectory, mean velocity (thick line) and realizations of velocity versus time.

first negative and then positive; but for the end-point control the velocity is first positive and
then negative. In other words, in the end-point control, the trajectory shows the phenomenon
of overshooting: the trajectory surpasses the desired point and then returns to the desired
point.

5. Discussion

We have presented a rigorous study on the TOPS model. Although TOPS models have been
attracting considerable attention, to the best of our knowledge, an analytical treatment as we
developed here has not been reported in the literature. As we clearly demonstrated here, such
a theoretical study can shed many new lights on the model and its implications.

We have only considered open-loop control in the current paper. It is interesting to
consider the similar problem with a feed back control, as we mentioned in [6]. To completely
solve the control problem with a feed back is a formidable task, as it has been demonstrated
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Figure 7. Mean velocity of the hold-on and the end-point minimization versus time and bifurcation
diagram of the maximum and minimum points of mean velocity of the hold-on control. Left: solid
line is the hold-on control, dotted line is end-point control. Inset is the blow up of the control
signal of the end-point control. T = 100, R = 1. Right: bifurcation diagram of the maximum and
minimum points of the mean velocity of the hold-on control with T = [10, 100]. Upper branch is
the position of maximum point and bottom branch is the minimum point.

in mathematical financial problems [14, 19]. In our further work, we intend to tackle the issue
with a linear feedback. The movement model becomes a geometrical Brownian motion. It
has been extensively studied in the context of the Black–Shore model.

Another interesting issue is to implement the control task by, say at least, (spiking)
integrate-and-fire neuronal networks [3, 4]. It is then interesting to implement it both as a
rate coding and a time coding model. For time coding model, our results here can be directly
applicable (α > 1/2). For rate coding model, it is still problematic since we will face a
situation with α < 1/2.

As we have pointed out before, whether α = 1 or not is a debatable issue and is related
to the currently hotly discussed problem of rate coding and time coding (see, for example,
[8, 16]). With α = 1, the output signal is not the firing rate generated from a Poisson process.
More exactly, with a Poisson process, we should have α = 1/2. Of course, if we assume
that the information of motor movement is carried by the interspike intervals of a spike train,
then we should have α = 1 for the Poisson process. On the surface, our work is purely an
optimal control problem. Our actual motivation is to combine neuronal outputs with motor
tasks, and we expect such an approach would eventually help us to understand the puzzling
issue of neuronal coding. To completely and finally resolve the issue, we have to resort to
experimental results.

In summary, our approach answers some questions related to the TOPS models and also
opens up many illuminating issues to be further investigated.

Finally we intend to compare the results in the current paper with that obtained in [6].
In [6], the optimal control problem for the following model:

dXt = −∂H(Xt , t)/∂Xt + η2(t) dBt (5.1)

is considered with a specific form (potential) H as defined in [6]. However, as we all know
from classical physics, equation (2.1) is a more realistic physical model than equation (5.1)
because, recalling Newton’s laws of motion, a potential really acts to cause a change in velocity
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rather than in position. The optimal control problem defined by equation (5.1) has been widely
studied in the literature [19] due to its simplicity, i.e. it is not a degenerate diffusion process.
Equation (2.1) is totally different, it is a degenerate diffusion process: the diffusion coefficient
in the equation of x1 is zero. This makes the task, i.e. to analytically find out an optimal control
signal, much hard. In fact, the well-known theory of the stochastic optimal control cannot be
applied to the optimal control problem defined by equation (2.1) [19]. Of course, using the
speeded-up approximation, we can approximate equation (2.1) by equation (5.1) (see p 178 in
[1] for more details).
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